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Effect of Polydispersity on the Cloud Point Curves
of Polymer Mixtures

Ryong-Joon Roe and Learong Lu
Department of Materials Science and Metallurgical Engineering

University of Cincinnati, Cincinnati, OH 45221-0012

ABSTRACT

A method is presented for the calculation of cloud point

curves of polymer-polymer mixtures when the polymers involved are

polydisperse. The method is based on the Flory-Huggins free

energy of mixing with a concentration-independent X parameter.

Numerical results are given for the cases where the molecular

weight distributions are represented by the Schulz-Flory type.

When the two polymers have similar average molecular weights and

polydispersities, the cloud point curves become flatter as the

polydispersity increases. When the two polymers have similar

average molecular weights but differ in their polydispersities,

the cloud point curves become more skewed as the difference in

the polydispersity increases. The results point out that, if the

polydispersity effect is not properly accounted for, the value of

X deduced from experimental cloud points is liable to be in

error, especially with regard to its temperature coefficient or

its concentration dependence.



As is well known, the solubility between two polymers is in

general severely limited because of the rather small entropic

gain achieved on mixing large molecules. Since the molecular

weight heterogeneity modifies only the entropic term, which is

already small to begin with, it could be expected that the

polydispersity influences the miscibility behavior of polymers

only weakly. This is certainly true when the polymers involved

are all of extremely high molecular weights. In many recent

studies1 - 3 of thermodynamics of polymer mixtures, especially of

those exhibiting UCST behavior, however, the polymers involved

were of relatively low molecular weights, so that a proper

consideration would have to be given to the possible effect of

polydispersity. With systems exhibiting LCST behavior the phase

separation is brought about usually by a change in the sign of

the X parameter accompanying a temperature change. In such cases

the absolute magnitude of the X term is small and therefore the

modification of the small entropic term by the polydispersity

effect, even when the molecular weights are high, may appreciably

affect the observed cloud point curves.

Extensive analyses have been made, by Koningsveld,4 Solc, 5

and others,6 on the effect of polydispersity on phase separation

of polymer solutions, i.e., solutions of a polydisperse polymer

in a low molecular weight solvent. These analyses all start from

the Flory-Huggins free energy of mixing (or its modification).

In this work we likewise take the Flory-Huggins expression for

the mixing of two polymers as the starting point, and investigate



numerically the expected binodal curves as a function of the

polydispersity of the two polymers. As has been stressed in

recent years,7 the mean-field approximation embodied in the

Flory-Huggins expression is fairly satisfactory in describing the

thermodynamics of polymer-polymer mixtures. A recent study by

Joanny8 of the critical behavior of polymer mixtures explicitly

confirms this. This is to be contrasted with the fact that for a

polymer solution the Flory-Huggins formula becomes grossly

inadequate near the critical point and at dilute concentrations.

Both for polymer-solvent and polymer-polymer systems the

effect of polydispersity on the spinodal curve and the critical

point can be deduced fairly easily. When the X parameter is

independent of molecular weights (but may be dependent on the

concentration), it has been known 9 that the spinodal curve

depends only on the weight-average molecular weight and the

critical point on the weight-average and z-average molecular

weights. No such simple results, however, arise in the case of

the binodal curve, which depends on the details of the molecular

weight distribution and can therefore be deduced only

numerically.

METHOD

We start the analysis with the Flory-Huggins free energy of

mixing in the following form:

AGH/RT = E(¢lp/p)lnolp + E(02 p/P)lnO2 p + X. 1 0 (1)

p p

where €lp is the volume fraction of the p-mer of polymer 1,
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1=pp ; 01 + '2 1 (2)

P

and X Is a function of temperature but is independent of @. The

chemical potential is derived from equation (1) as:

6lp/RT = lnolp + 1 - P( 1/Pln+"2/P2n) +XP( P 2 )2  (3)

where Pin is the number-average DP of polymer 1. When two phases

coexist, the chemical potentials of each species in the phases A

an Bar eua: AA BApp = A 1ip, and it therefore follows that:

Aan B areA Be2pd) 1 /fi = ep~a p); 2p/'P2p =exp(0)(4

where

0, A /A A A B- pB B _'B /PB n - PA )2 _-0B)2 (5)
1 'P1/Pln + ¢2/P2n - i/Pin - 22n 2 2

and

A A A A /A B B B/ B (,A)2 _(B)21 (6)

2  /Pin + '2/P2n - I/Pin - "2/P2n - 1

At the cloud point, at which an infinitesimal volume of

phase A has just separated out, the composition of phase B is

essentially the same as the composition of the whole mixture:

'PBp l0p (cloud point) (7)

Eliminating X from (5) and (6) and using the condition (7), we

find:

(O ' )a 1/ + (O+0 2= -O/A+AP
1 1 ( l2/22n 2 2n 1/Pln,2/P2n)  (8)

If wl(p) and w2 (p) are the (normalized) molecular weight

3/



distributions (by weight) of polymer 1 and polymer 2

respectively, the quantities in equation (8) pertaining to the

incipient phase A can be expressed as:

A(9
0 1 w,(P) exp(aP) (9)

P

A A

01/Pin 01 ZE (l/p) w1 (p) exp(alp) (10)
p

and similarly for A and A Thus, equation (8) can be
2 2 2

regarded as an implicit equation f(a 1 ,a 2 ) = 0 for two unknowns

and 02. Another implicit equation for 0, and 02 arises from the

condition that:

A A (1+ 0 1 (11)

in conjunction with equation (9). Thus, equations (8) and (11)

constitute a set of two simultaneous equations which can be

solved for 01 and 02 for given values of 41, w1 (p), and w2 (P). X

can then be evaluated from either equation (5) or (6).

For numerical calculation of the cloud point curve, we

assume the molecular weight distribution w(p) to be given by the

so-called Schulz-Flory distribution:

w(p) = (ak+lpk/ki) exp (-ap) (12)

where the parameters a and k are related to the number average

DP, pn, and the polydispersity index, P =w/Pn, by

Pn = k/a; s = 1 + 1/k (13)

The summations indicated by equations (9) and (10) can then be

easily evaluated by integration. The numerical solution of the

equations (8) and (11) for a, and 02 is then straightforward.



All results shown below were obtained with a PDP 11/23 computer.

RESULTS AND DISCUSSION

Fig. I shows the cloud point curves calculated for the case

where P1w = P2w = 1000 and BI = $2 = 1.0, 1.1, and 2.0

respectively. The three curves go through the common critical

point at 01 = 0.5. When x is independent of composition, the

spinodal curve is given by:

1/Plw¢1 + 1/P2wO2 = 2X (14)

and the critical point by:

/'2c 1 + P2wPlz/PlwP2z (15)

and

2Xc (1/pk + /p)+ pz/P2w), (16)

from which it can easily be shown that the three curves should

share the critical point. For polymer pairs having p1w (and P2w )

different from 1000 the curves remain the same if X values are

suitably rescaled. This can be seen from the fact that the

structure of the Flory-Huggins equation remains unaltered when

all the molecular lengths are reduced by a constant factor and X,

at the same time, is multiplied by the same factor.

The most interesting feature of Fig. 1 is that as the

polydispersity index 0 is increased, the cloud point curves

become flatter. In other words, at compositions away from

01 = 0.5, phase separation occurs more readily (i.e., at a lower

value of X) as the polymers become more polydisperse. To

5



understand why this happens, we analyze the composition of the

minority phase (or phase A) which just begins to come out as a

separate phase at the cloud point. Fig. 2 shows the calculated

values of 0 Avs. X (the so-called shadow curve) for

P1w P2w 1000 and 81 = B2 = 2.0. The cloud point and the

spinodal curves are also shown there. The horizontal line ties a

point on the shadow curve with a point on the cloud point curve,

indicating that these two points correspond to the compositions

of the coexisting phases at the given value of X. Fig. 3 shows

A
the weight-average Plw of polymer 1 in phase A separated out from

the principal phase of composition 01. Thus, when a mixture

containing, say, 205 of polymer 1 is brought to the condition of

incipient phase separation, the minority phase that is being

formed contains 68.67% of polymer 1, instead of 80% as would be

expected if both polymers were monodisperse. The polymer 1 in

phase A consists predominantly of higher molecular weight

fractions of the original polymer so that its weight-average DP

is now equal to 1853. Thus, this fractionation, in favor of the

higher molecular weight end of the distribution, is responsible

for the separation occurring prematurely at a value of X smaller

than otherwise.

For the polymers having the Schulz-Flory distribution

considered here, the polydispersity index of the polymers

separating out in the minority phase is not different from that

in the principal phase. This is so, since from equations (M),

(7) and (12), we have:

wA(p) (8k+lpk/k1) exp [-(a- p] (17)

6



showing that the index 8 1 + 1/k is unaltered. The same

conclusion is reached even when one of the components involved is

a low molecular weight solvent. Thus, in the case of a polymer

having the Schulz-Flory distribution, the width of the

distribution cannot be made narrower by fractional

precipitation.5a

Figs. 4 and 5 show the cloud point curves calculated for the

cases where p1w = P2w = 1000 but 8j # a2 . The cloud point curves

develop assymmetry as the polydispersity indices of the two

polymers deviate from each other. The distortion of the curve

away from the symmetrical shape is in the same direction as one

would have found if one had made the pw of one of the polymers

larger, instead of making its distribution broader.

One of the most practical ways of determining X parameters

between polymer pairs is to determine the cloud points

experimentally and then find the best value of X which brings the

observed values in agreement with the cloud point curves

calculated in accordance with the Flory-Huggins expression. In

such a procedure, the effect of polydispersity is normally

neglected because of computational difficulties. The present

results show that unless the polymers employed have fairly narrow

distributions, the X values thus obtained could entail an

appreciable error. When the two polymers are symmetrical with

respect to Pw and 8, the error is more likely to affect the

temperature coefficient of the X parameter, while when the two

polymers differ in their polyd1spersity, the error is more likely

to affect the concentration dependence of the X parameter.L7



In the analysis of the cloud point curves of polymer-solvent

systems, it was shown 5 that a computational difficulty arises

when the molecular weight distribution is a "divergent" type (for

example, log-normal distribution), and also that in the vicinity

of the critical point a more complicated phase relations,

sometimes leading to a coexistence of three phases, could be

encountered. Analogous situations are expected to arise in the

case of polymer-polymer systems as well, but we have not

investigated these subtleties in this work.
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Legends to Figures

Figure 1. Cloud point curves calculated for the symmetrical

cases: P1w = P2w = 1000 and 61 = 62 = 1.0, 1.1 and

2.0 as indicated.

Figure 2. The cloud point curve (labeled 1) and the spinodal

curve (broken line), calculated for the case where

P1w = P2w = 1000 and F, = E2 = 2.0. The curve labeledA
A is the "shadow" curve giving the composition of the

incipient minority phase A. The horizontal lines tie

pairs of points giving the composition I of the

principal phase and the composition 'A of the minority

phase which coexist at the cloud point.

Figure 3. The ordinate gives the weight-average DPP~w, of

polymer 1 in the incipient minority phase A which

coexists with the principal phase of composition -I,

calculated for the case where P1w = P2w = 1000 and

6 1 = 62 = 2.0.

Figure 4. Cloud point curves for Plw = P2w =  10009 61 = 2.0 and

62 = 1.0, 1.1 and 2.0 respectively. As the

polydispersities of the two polymers deviate more from

each other, the curves become more unsymmetrical. It

is as if the molecular weight of the broader polymer

has become much higher, even though in fact the

weight-average DP's of the two polymers are the same.

Figure 5. Cloud point curves for P1w = P2w = 1000, a1 = 1 and

a2 = 1.0, 1.1 and 2.0 respectively. See the caption

for Figure 4.
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